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Non-abelian discrete gauge symmetries can provide the inaton with a at

potential even when one takes into account gravitational strength e�ects. The

discreteness of the symmetries also provide special �eld values where ination

can end via a hybrid type mechanism. An interesting feature of this method

is that it can naturally lead to extremely at potentials and so, in principle,

to ination at unusually low energy scales. Two examples of e�ective �eld

theories with this mechanism are given, one with a hybrid exit and one with

a mutated hybrid exit. They include an explicit example in which the single

�eld consistency condition is violated.
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I. INTRODUCTION

Ination [1] explains many basic features of our universe [2,3]. It is also thought to have

generated the density perturbations needed to form galaxies and all the other large scale

structure in the observable universe [4]. There are many types of ination that are natural

from the particle physics point of view.

If the energy density of our vacuum (the cosmological constant) is positive, then it will

eventually give rise to ination. Observations suggest this is just beginning now. Although

this type of ination is natural, the fact that it is just beginning now can (in the opinion of

EDS) only be explained by anthropically selected �ne-tuning of the cosmological constant.

If in the past the universe became trapped in a positive energy false vacuum for su�-

ciently long, one will get an epoch of false vacuum (old) ination [2]. This probably did

happen, though in the unobservably distant past. A false vacuum with near Planck scale

energy density could start (eternal) ination from fairly generic initial conditions. The

desirable properties (and maybe even necessity) of eternal ination have been stressed by

Linde [5] in the context of �n chaotic inationary potentials. Unfortunately, such potentials

generically do not survive the inclusion of gravitational strength e�ects, especially for the

extremely large �eld values needed to start eternal ination at the Planck density. However,

much the same ideas can be realized using the generic false vacuum ination.

Thermal ination [6] just needs a potential V = V0 � 1

2
m2�2 + : : : with m � V

1=4

0 ,

typical of supersymmetric theories. It occurs when � is held at � = 0 by thermal e�ects,

and is probably needed to solve [6] the moduli (Polonyi) problem [7]. It also has important

implications for baryogenesis and dark matter [8{12].

Rolling scalar �eld ination just needs a potential V = V0 � 1

2
m2�2 + : : : with m �

V
1=2

0 =MPl where MPl = 1=
p
8�G ' 2:4 � 1018GeV, typical of moduli potentials. It occurs

as the inaton � rolls o� the maximum of the potential. This may also have happened.

However, observations constrain the density perturbations to be approximately scale-

invariant. Therefore, the natural way to produce these is with an approximately scale-
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invariant ination. The only known scale-invariant ination is a limit of rolling scalar �eld

ination called slow-roll ination [13]. It requires the stronger condition m� V
1=2

0 =MPl, or

more generally

 
V 0

V

!2
�

1

M2
Pl

(1)

and

�����V
00

V

������ 1

M2
Pl

(2)

The �rst condition suggests we should be near a maximum, or other extremum, of the

potential. The second is non-trivial [15,16]. For example, many models of ination are built

ignoring gravitational strength interactions, and so are implicitly setting MPl =1. Clearly

one cannot achieve the second condition in this context. In supergravity, the potential is

composed of two parts, the F -term and the D-term. If the inationary potential energy is

dominated by the F -term then one can show that [17,15,16]

V 00

V
=

1

M2
Pl

+model dependent terms (3)

Unless the model dependent terms cancel the �rst term, the second slow roll condition,

Eq. (2) above, is violated. Thus to build a model of slow-roll ination one must be able to

control the gravitational strength corrections.

There have been various attempts at achieving slow-roll ination naturally, which are

summarized below. For extensive references on inationary models, see, for example, [14].

Special forms for the Kahler potential [15,16,18]: The F -term part of the potential is

determined by the superpotential W and the Kahler potential K. The Kahler potential

contains most of the terms which make slow-roll ination di�cult. Choosing a special form

for the Kahler potential combined with some other conditions can allow one to cancel o�

the model independent gravitational strength corrections that generically destroy slow-roll

ination. Kahler potentials of the required form arise in large radius, weak coupling limits

of string theory or in models with some e�ective extended supersymmetry.
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D-term domination of the inationary potential energy [19]1: Naively simple, but in

order to obtain the COBE normalisation one must stabilize a modulus at a very large value

without the aid of F -term supersymmetry breaking.

Flattening the inaton's potential with quantum corrections [21,22]: This is completely

natural but is being tested by observations and may not succeed.

Cancellation mechanism [23]: Here the expectation value of a Nambu-Goldstone boson

is used to cancel the inaton's mass to produce slow-roll.

In this paper we use non-abelian discrete gauge symmetries to guarantee the atness

of the inaton's potential. The basic idea was presented in [24]. Here two full inationary

models utilizing this idea are constructed, a hybrid model and a mutated hybrid model. The

inationary mechanism requires the inclusion of higher order terms in the superpotential

(and Kahler potential and supersymmetric loop corrections), and quantitative calculation

of the properties of the exit. As the hybrid model can have a very at potential, it can

have a low energy scale, but this also brings with it the possibility of large uctuations [25]

during the exit which provides a stringent constraint. This inationary mechanism has the

advantage that one can work in the low energy e�ective �eld theory, without needing to

know the detailed high energy theory.

In Section II we describe our basic idea. In Sections III and IV we give examples of

models implementing this idea. In Section V we give our conclusions. In the Appendix we

list useful properties of the non-abelian discrete group �(96) that we use to build the models

of Sections III and IV.

1The �rst D-term model of ination was given in [20] but the model and the motivation were

di�erent.
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II. THE IDEA

One of the better early attempts to naturally achieve a at inaton potential was Natural

Ination [26]. The inaton was the pseudo-Nambu-Goldstone boson � of an approximate

U(1) global symmetry. The potential was of the form

V = �f(�) (4)

where �! 0 in the limit of exact symmetry. Thus the inaton's mass

V 00 / � (5)

can be made arbitrarily small. However, in this model one can not use the U(1) global

symmetry to enforce

�����V
00

V

������ 1

M2
Pl

(6)

because V also vanishes in the limit where the symmetry is exact.

This problem can be solved by adding a constant to the potential

V = V0 + �f(�) (7)

in which case one could in principle make jV 00=V j arbitrarily small.

However, one must now �nd a way to end ination. Ination can end if there is some

critical value of the inaton, � = �c, at which the potential destabilizes (hybrid ination

mechanism [30]). This must violate the U(1) symmetry, as a particular value of � is singled

out. However, special values of � can be consistent with a discrete subgroup of the U(1)

symmetry being unbroken.

Furthermore, if this discrete subgroup is gauged, it can be regarded as fundamental, with

the approximate U(1) global symmetry arising as a consequence. For example, if one had

�elds �+ and �� with charges +1 and �1 respectively under a Z4 symmetry, then the lowest

dimension (and thus dominant) invariants, �+��, j�+j
2
, and j��j

2
, are invariant under the

extended global U(1) symmetry, while terms which explicitly break the U(1), such as �4+,
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are of higher order. The exact discrete Z4 symmetry thus gives rise to an approximate U(1)

symmetry in the region of �eld space in which j�+j and j��j are small.

In order to realize the couplings necessary for the hybrid ination mechanism, for example

��2 2, it is more natural to use a non-abelian discrete symmetry. The inaton then cor-

responds to the pseudo-Nambu-Goldstone bosons, �a=j�j, of the approximate non-abelian

continuous symmetry, and the hybrid exit is implemented when the magnitude of one of the

components of a representation of the symmetry reaches some critical value, for example

j�1j = �c, rather than when the phase of a �eld reaches some critical value, which would be

the case if one were to use an abelian discrete symmetry.

For a (discrete) gauge theory to be consistent it must be anomaly free [27]. However, only

the linear anomaly conditions survive for discrete abelian gauge symmetries [28]. For the

same reasons we expect only linear anomaly conditions to survive for non-abelian discrete

gauge symmetries. However, there are no linear anomaly conditions for non-abelian gauge

symmetries. Therefore, by this argument, non-abelian discrete gauge symmetries should be

automatically anomaly free. Of course, any other gauge symmetries in the model will have

to satisfy the usual anomaly conditions.

In order to have our pseudo-Nambu-Goldstone bosons, we need a potential which spon-

taneously breaks the extended continuous symmetry, �xing j�j �
�P

a j�aj
2
�1=2

at some

value �0 > 0. In this paper, we assume a hidden sector breaks supersymmetry. This gen-

erates supersymmetry breaking terms, including a vacuum energy V0 and masses for the

scalars, in our e�ective potential. We then use the renormalization group running of the

supersymmetry breaking mass term for � to generate a potential for � with non-trivial

minimum j�j = �0 [29]. The renormalization is induced (to leading order) by low dimension

couplings symmetric under the extended continuous symmetry. Thus the renormalization

group masses and the potential will be symmetric under the extended continuous symmetry.

However, this potential could be obtained in several other ways. One particularly inter-

esting possibility would be to generate the potential from strong coupling dynamics sym-

metric under the extended continuous symmetry, allowing the inaton to be intimately
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connected with the strong coupling dynamics that presumably also generates the vacuum

energy that drives the ination. Normally it would be di�cult to control the inaton's mass

in such a context, but here it is protected by the discrete gauge symmetries.

In this paper we use the non-abelian discrete symmetry �(96) � SU(3) described in the

Appendix. However, many other choices for the non-abelian discrete symmetry are possible;

for example, one could use non-abelian discrete subgroups of SU(2) which would lead to

more minimal models. We use �(96) simply for ease of model building.

To build a model one makes a suitable choice of gauge group and representations. The

symmetries strongly constrain the allowed terms in the superpotential and Kahler potential.

The resulting e�ective �eld theory is determined by the gauge symmetries, the representa-

tions, the couplings, and the supersymmetry breaking parameters.

III. A HYBRID MODEL

We choose the gauge symmetries and �elds shown in Table I. The non-abelian discrete

symmetry �(96) is described in the Appendix. The model is anomaly free.

� 	 � �

�(96) � SU(3) 3 3 3 3

Z3 1 �1 1 1

U(1) 0 0 1 �1

TABLE I. Symmetries and �elds in the hybrid model. 3 represents a fundamental representation

of both the discrete gauge symmetry �(96) and its global extension to SU(3).
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For this choice of symmetries and �elds, the most general superpotential is

W = �� ^� ^ �+
�

2

3X
a=1

�2
a
	2
a
+
�

2

3X
a=1

	2
a
�a�a (8)

plus dimension 6 and higher terms. Here, and throughout most of the rest of the paper, we

have set MPl = 1 (not MPl = 1!). Some other sector breaks supersymmetry, and in our

low energy e�ective �eld theory gives rise to the following general supersymmetry breaking

terms:

Vsusy�� = V0 + ~m2
� j�j

2 �m2
	 j	j

2
+m2

� j�j
2
+m2

� j�j
2

�
 
��� ^ � ^ �+ ��

3X
a=1

�2
a
	2
a
+ ��

3X
a=1

	2
a
�a�a + c.c.

!
(9)

plus dimension 6 and higher terms. Here ~m2
� (j�j) is the SU(3) symmetric renormalization

group running mass squared of � induced by the SU(3) symmetric coupling �� ^ � ^ �

in the superpotential. We assume that ~m2
� (j�j) j�j

2
has a minimum at j�j = �0. We also

assume that m2
	 > 0, m2

� > 0, and m2
� > 0. As mentioned earlier, generically the masses

squared have magnitude greater than or equal to V0 due to supergravity corrections.

We consider the minimum in �eld space corresponding to the background with � =

� = 0. The symmetries guarantee that this background is an extremum and one can

verify explicitly that it is stable if j�j > j��=�2j or j�j
2
(m2

� +m2
�) > j��j

2
. We assume

that � is located in the neighborhood of j�j = �0 and replace the term ~m2
� (j�j) j�j

2
by

m2
� (j�j � �0)

2
. The leading terms are now

W =
�

2

3X
a=1

�2
a
	2
a

(10)

and

Vsusy�� = V0 +m2
� (j�j � �0)

2 �m2
	 j	j

2 �
 
��

3X
a=1

�2
a
	2
a
+ c.c.

!
(11)

Note that the D-term is zero. The term m2
� (j�j � �0)

2
will constrain � to lie on the sphere

j�j = �0. The lowest order terms in the potential are then

V = V0 +
3X
a=1

h
j�j2 j�aj

4 j	aj
2
+ j�j2 j�aj

2 j	aj
4 �

�
���

2
a
	2
a
+ c.c.

�
�m2

	 j	aj
2
i

(12)

7



with the constraint j�j = �0.

This is a hybrid ination [30] type potential. When

j�aj > �c �
s
�m	

j�j
; a = 1; 2; 3 (13)

	 is constrained to zero, leaving the potential

V = V0 (14)

with the constraint j�j = �0. When one of the j�aj drops below �c, the potential becomes

unstable to j	aj ! 1. This may cause ination to rapidly end, see Section IIIA, or there

could be more ination as j	aj ! 1, see Section IIIB. We have assumed

�0 >
p
3 �c (15)

The constant � is given by

� =

vuut1 +

 
j��j
j�jm	

!2
+

j��j
j�jm	

(16)

We expect j��j <� j�jm	 so that � � 1.

The potential, Eq. (14), is at with respect to the Nambu-Goldstone bosons �a= j�j.

However, the higher dimension terms in the Kahler potential and superpotential that we have

neglected up to now will generate a gentle slope. The relevant higher dimension invariants

are �2
1�

2
2�

2
3,
P
a j�aj

4
, and

P
a 6=b j�aj

2 j�bj
2
, which generate the terms

W = : : :+
1

2
��2

1�
2
2�

2
3 (17)

and

Vsusy�� = : : :+m2
1

X
a

j�aj
4
+m2

2

X
a6=b

j�aj
2 j�bj

2 �
�
���

2
1�

2
2�

2
3 + c.c.

�
(18)

Now for j�j = �0 we have

X
a

j�aj
4
= �4

0 � 2
X
a6=b

j�aj
2 j�bj

2
(19)
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and so

V = V0 +m2
1�

4
0 +m2

K

X
a6=b

j�aj
2 j�bj

2 �
�
���

2
1�

2
2�

2
3 + c.c.

�

+ j�j2 j�1j
2 j�2j

2 j�3j
2
X
a6=b

j�aj
2 j�bj

2
(20)

where m2
K
� m2

2 � 2m2
1.

We assume the terms derived from the non-holomorphic invariants dominate over the

ones derived from the holomorphic invariant. This can be ensured either by adding extra

symmetry to the model, which could set � = 0, or just by being in the appropriate region

of parameter space (m2
K
� ���

2
0). We also require m2

1�
4
0 � V0. In order for the non-

holomorphic term to drive the inaton towards the hybrid exit to ination, we require

m2
K
> 0. Then

V = V0 +m2
K

X
a6=b

j�aj
2 j�bj

2
(21)

with the constraint j�j = �0. For simplicity, we assume2 j�1j
2
; j�2j

2� j�3j
2
. Then

V = V0 +m2
K
�2
0

2X
a=1

j�aj
2

(22)

Quantum corrections will also generate a small slope

V1loop =
1

64�2
StrM4 ln

M2

�2
(23)

=
1

64�2

3X
a=1

(h
j�j2 j�aj

4 �m2
	 + 2 j��j j�aj

2
i2
ln
j�j2 j�aj

4 �m2
	 + 2 j��j j�aj

2

�2

+
h
j�j2 j�aj

4 �m2
	 � 2 j��j j�aj

2
i2
ln
j�j2 j�aj

4 �m2
	 � 2 j��j j�aj

2

�2

� 2
h
j�j2 j�aj

4
i2
ln
j�j2 j�aj

4

�2

)
(24)

=
j�j4

64�2

3X
a=1

8<
:
h�
j�aj

2 � ��2�2
c

� �
j�aj

2
+ �2

c

�i2
ln
j�j2

�
j�aj

2 � ��2�2
c

� �
j�aj

2
+ �2

c

�
�2

+
h�
j�aj

2 ��2
c

� �
j�aj

2
+ ��2�2

c

�i2
ln
j�j2

�
j�aj

2 � �2
c

� �
j�aj

2
+ ��2�2

c

�
�2

2If instead j�1j
2
� j�2j

2
� j�3j

2, the dynamics of �1 and �2 do not decouple.
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� 2 j�aj
8
ln
j�j2 j�aj

4

�2

)
(25)

For j�j2 = �2
0� �2

c and j�1j
2
; j�2j

2 � j�3j
2
, this gives

V1loop =
(4 � �2 � ��2)

16�2
ln

 
j�j2�4

0

�2

!
j�j2m2

 
�2
0

2X
a=1

j�aj
2

(26)

This can be absorbed into Eq. (22) if

m2
K
>� j�j

2
m2

	 (27)

We assume j�1j � j�2j so that j�1j controls the end of ination and so is the relevant

degree of freedom. De�ning � =
p
2 j�1j,  =

p
2 j	1j, and �c =

p
2 �c, and reintroducing

the hybrid exit terms, Eq. (12), (with phases relaxed and irrelevant terms dropped), we get

our e�ective model of ination

V = V0 +
1

2
m2
K
�2
0�

2 +
1

2

�
1

4
j�j2 �4 � j��j�2 �m2

	

�
 2 (28)

There are two possibilities for when astronomically observable scales could leave the horizon

during ination; either at � > �c or at � < �c. The former requires a quick hybrid exit

in order to avoid possible problems with a spike in the density perturbation spectrum at

� = �c [25]. The latter occurs in the opposite limit of a slow exit.

A. Fast exit

Here astronomically observable scales leave the horizon when � > �c. The slow roll

conditions are satis�ed if m2
K
�2
0� V0. The number of e-folds until � = �c is

N =

Z
tc

t

H dt '
Z
�

�c

V

V 0
d� =

V0

m2
K
�2
0

ln
�

�c
(29)

The COBE normalization gives

V 3=2

V 0
=

V
3=2

0

m2
K
�2
0�

=
V
3=2

0

m2
K
�2
0�c

exp

 
�
m2
K
�2
0N

V0

!
= 6 � 10�4 (30)

Substituting in for �c =
p
2�c and using Eq. (13), this can be rewritten

10



V
1=4

0 = 10�3
 
�

j�j

!1=2 
m2

	

V0

!1=4  
m2
K
�2
0

V0

!
exp

 
m2
K
�2
0N

V0

!
(31)

The spectral index is

n = 1 + 2
V 00

V
= 1 +

2m2
K
�2
0

V0
(32)

A quick hybrid exit avoids problems at � � �c, caused by  's uctuations leading to too

large a spike in the density perturbation spectrum, by making the time at which ination

ends e�ectively controlled by �'s classical motion rather than by  's stochastic uctuations.

The rough idea is that  's e�ective mass squared goes from � H2 � V0 to � �H2 � �V0

in a time-scale short compared with the Hubble time so that the stochastic uctuations

in  , which do actually cause the end of ination, do not lead to large uctuations in the

number of e-folds of expansion, and so do not lead to large density perturbations. In terms

of parameters this means

dM2
 

dN

�����
�=�c

=
dM2

 

d�

�����
�=�c

d�

dN

�����
�=�c

=
2 (�2 + 1)m2

	m
2
K
�2
0

V0
� V0 (33)

where M2
 
= 1

4
j�j2 �4 � j��j�2 �m2

	 is the e�ective mass of  .

This constraint, when combined with the others mentioned above, severely restricts the

parameter space. However, pushing things to the limit, one can still come up with interesting

numbers. For example, taking �0 = 10�3:5 j�j�1, m	 = 10�8 j�j�1, and mK = 10�8 gives

V
1=4

0 = 10�5 j�j�1=2 and n = 1:002. Taking j�j = 108 would then givem	 = 10�16 ' 200GeV

and V
1=4

0 = 10�9 ' 2 � 109GeV.

B. Slow exit

When � ' �c,  's mass is partially canceled 3 allowing  to slow-roll in addition to �.

Here astronomically observable scales leave the horizon when � < �c. De�ne ' = �c � �.

3This is similar to the scenario of Ref. [23] in which the expectation value of a Nambu-Goldstone

boson is used to cancel o� the mass of the inaton. Our scenario has very di�erent parameters,
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Then

V = V0 �m2
K
�2
0�c'�

(�2 + 1)m2
 

�c
' 2 +O

 
'2

�2c

!
(34)

Note that when ' becomes of order �c,  's mass is no longer suppressed and ination ends

rapidly, if it has not already ended. Thus ' � �c will be a good approximation during

ination. The slow-roll equations of motion are

d'

dN
= �

m2
K
�2
0�c

V0
�
(�2 + 1)m2

 

V0�c
 2 (35)

d 

dN
= �2

(�2 + 1)m2
 

V0�c
' (36)

where

N =

Z
te

t

H dt (37)

is the number of e-folds until the end of ination. Once

 2�
m2
K
�2
0�

2
c

(�2 + 1)m2
 

(38)

one can solve this system of equations to give

1

2
 2 = '2 +A2 (39)

where A is a constant. Substituting this into Eq. (35) and integrating gives

N =
V0�c

2 (�2 + 1)Am2
 

"
tan�1

A

'
� tan�1

A

'e

#
(40)

Therefore, once ' and  have rolled to values much greater than A, we have

' �
1
p
2
 �

V0�c

2(�2 + 1)m2
 
N

(41)

which leads to di�erent terms dominating the potential when observable scales leave the horizon

during ination.
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Therefore, in terms of N , the condition Eq. (38) translates to

2
�
�2 + 1

�
N2m2

 
m2
K
�2
0 � V 2

0 (42)

i.e. the limit opposite to that of Eq. (33) of the previous section.

Because both ' and  are slow-rolling, we need to use the method of Ref. [31] to calculate

the density perturbations.4 The physics behind this method is very intuitive. Stochastic

uctuations in the scalar �elds lead to perturbations in the number of e-folds of expansion.

Perturbations in the number of e-folds of expansion then induce curvature perturbations.

Finally, once these curvature perturbations re-enter the horizon after ination, they are

naturally reinterpreted as density perturbations. Now from Eq. (40)

N =
V0�c

2 (�2 + 1)m2
 
'

"
1 �

A2

3'2
+O

 
A4

'4

!
+O

 
'

'e

!#
: (43)

To calculate the change in N as ' and  are changed, one also needs to use from Eq. (39)

that

@A

@'
= �

'

A
(44)

and

@A

@ 
=

 

2A
(45)

that is, one also needs to take into account uctuations between trajectories characterized

by a given value of A, as well as uctuations along a given trajectory. Therefore, including

this,

@N

@'
= �

2 (�2 + 1)m2
 
N2

3V0�c
(46)

4Note that the dangerous spike in the density perturbations produced at � � �c, i.e. ' � 0, is

inated to unobservably large scales by the ination that occurs at ' > 0. Our direct calculation

shows that the density perturbations are acceptable on observable scales.
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@N

@ 
= �

2
p
2 (�2 + 1)m2

 
N2

3V0�c
(47)

The COBE normalisation is [31,33]

H

2�

vuut @N
@'

!2
+

 
@N

@ 

!2
= 6 � 10�5 (48)

Therefore

V
1=2

0

vuut @N
@'

!2
+

 
@N

@ 

!2
=

2 (�2 + 1)m2
 
N2

V
1=2

0 �c
= 6� 10�4 (49)

and so

V
1=4

0 = 10�7 j�j�1=2
 

2
p
�

�2 + 1

!�
45

N

�2  V0
m2
 

!3=4
(50)

The spectral index is

n = 1�
4

N
(51)

This is the same as one would get if one had a potential of the form V = V0�a�3, for example

Ref. [23]. However, the two models can in principle be distinguished by the fact that our

model does not satisfy the single component inaton consistency condition nT = �bT=S.

Here nT is the spectral index of the gravitational waves, b is a constant that depends on

conventions, and S and T are the amplitudes of the scalar perturbations and the gravitational

waves, respectively [34]. Instead we have

nT = �3b
T

S
(52)

In practice, though, this will be impossibly di�cult to measure.

An interesting feature of this model is that it can easily produce ination at very low

scales; for instance, one can get V
1=4

0 = 10�14 ' 20TeV with m � 10�24 and � � 102. This

would, for example, be a low enough scale to replace thermal ination [6]. It would also

make embedding the model in the MSSM, or modest extensions thereof, plausible. However,

the low scale of ination means that less ination is needed and so observable scales leave

14



the horizon at relatively small values of N . This, combined with the relatively large factor

of 4 in Eq. (51), results in a spectral index n which is too small to agree with observations.

One can get a more viable spectral index, i.e. n closer to 1, by raising the scale of ination;

for instance taking V
1=4

0 � 10�8. Other parameters are then constrained by Eqs. (15), (27),

(42) and (50).

IV. A MUTATED HYBRID MODEL

To get a mutated hybrid ination model, one can instead take the symmetries and �eld

content shown in Table II.

� 	 � � 
 �

�(96) � SU(3) 3 3 3 3 3 3

Z9 3 �1 3 3 �1 �1

Z3 0 0 1 �1 0 0

Z0

3 0 0 0 0 1 �1

TABLE II. Symmetries and �elds in the mutated hybrid model. 3 represents a fundamental

representation of both the discrete gauge symmetry �(96) and its global extension to SU(3).
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The most general superpotential is

W = �� ^ � ^ �+
�

3

3X
a=1

�a	
3
a
+
�

3

3X
a=1

�a	a
a�a (53)

plus higher dimension terms, and the most general supersymmetry breaking terms are

Vsusy�� = V0 + ~m2
� j�j

2 �m2
	 j	j

2
+m2

� j�j
2
+m2

� j�j
2
+m2


 j
j
2
+m2

� j�j
2

�
 
��� ^� ^ � + ��

3X
a=1

�a	
3
a
+ ��

3X
a=1

�a	a
a�a + c.c.

!
(54)

plus higher dimension terms. �'s mass squared acquires a � dependence from the renormal-

ization group running induced by the coupling �� ^� ^ � in the superpotential. Since this

coupling is SU(3) symmetric, the � dependence induced by it will also be SU(3) symmetric,

i.e. ~m2
� = ~m2

� (j�j). We assume ~m2
� (j�j) j�j

2
has a minimum at j�j = �0. The higher di-

mension, SU(3) asymmetric couplings will induce a small SU(3) asymmetric � dependence

in the potential. These small quantum corrections will be considered later.

The potential is minimized for � = � = 
 = � = 0. We assume that � is located in the

neighborhood of j�j = �0 and replace ~m2
� (j�j) j�j

2
by m2

� (j�j � �0)
2
.

In this background, the model simpli�es to

W =
�

3

3X
a=1

�a	
3
a

(55)

and

V = V0 +m2
� (j�j � �0)

2 �m2
	 j	j

2 �
 
��

3X
a=1

�a	
3
a
+ c.c.

!

+ j�j2
3X

a=1

j�aj
2 j	aj

4
+
1

9
j�j2

3X
a=1

j	aj
6

(56)

This is a mutated hybrid ination [32] type potential. During ination � constrains 	 to

small but non-zero values

j	aj =
�m	p
2 j�j j�aj

(57)

where
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� =

vuut1 +

 
3 j��j

2
p
2 j�jm	

!2
+

3 j��j
2
p
2 j�jm	

(58)

and we have neglected the j	aj
6
term. The e�ective potential for � is therefore

V = V0 +m2
� (j�j � �0)

2 �
3X

a=1

�2 (�2 + 2)m4
	

12 j�j2 j�aj
2

(59)

In the limit j�1j
2 � j�2j

2
+ j�3j

2
this simpli�es to

V = V0 �
�2 (�2 + 2)m4

	

12 j�j2 j�1j
2

(60)

which is a mutated hybrid ination potential [32]. During ination j�1j, or more precisely

the �eld corresponding to the trajectory Eq. (57), rolls to smaller values and eventually rolls

fast enough to end ination.

Mutated hybrid ination has a spectral index [32]

n = 1�
3

2N
� 0:97 (61)

and the COBE normalisation gives

V
1=4

0 =
10�5q
j�j

�
50

N

�3=4 m	

V
1=2

0

(62)

V. DISCUSSION AND CONCLUSIONS

We have discussed a mechanism to obtain potentials at enough for slow-roll ination in

the presence of supergravity corrections, and given a hybrid and mutated hybrid example.

Our context has been that of a low energy e�ective �eld theory. Discrete gauge symmetries

are used to guarantee that Planck scale e�ects do not destroy the atness of the potential,

which is determined by the choice of gauge symmetries, representations, and signs of the

supersymmetry breaking masses. Constraints on the viable models we considered were

related to the mutated or hybrid exits. The exit had to be approached via the slow roll

potential and additionally not generate uctuations inconsistent with observation. As this
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is a only a �rst attempt at building models implementing this mechanism, it is likely that

more elegant versions are possible.

One attractive feature of this way of obtaining ination is that in principle, the ina-

tionary scales for the hybrid models can be very low. In the speci�c case we looked at, the

spectral index becomes unviably small as the scale of ination is lowered, but we do not have

any reason to expect this to be a generic limitation for these sorts of models. Ination at

very low scales has several advantages. For example, it might obviate the need for a round of

thermal ination [6], as mentioned above, to solve the moduli problem. In addition, due to

the low energy scales involved, the model might have a simple relation to phenomenological

particle theory models such as the minimal supersymmetric standard model. One might

also be able to make some correspondence with the discrete gauge symmetries used here to

obtain atness and the discrete symmetries in various parts of the standard model and its

supersymmetric extensions, for example those used for fermion masses, to suppress avour

changing neutral currents, or in certain grand uni�ed theories.

It should be stressed that this model is in the context of an e�ective �eld theory. As a

result, certain properties of the more complete theory cannot be deduced from the e�ective

theory alone, as they are more model dependent than the inationary mechanismand its exit

described here. These include the details of (pre)heating and the value of the cosmological

constant today.

On a related note, we have not discussed constraints from gravitino production in the

cases where these models have a higher inationary scale. This is primarily because, aside

from the low reheating temperature case mentioned above, a short era of low scale ination

is needed to dilute the moduli, and will serve to dilute the gravitinos as well. In addition,

the amount of gravitino production is strongly model dependent, and thus our e�ective

�eld theory does not necessarily contain enough information to predict it. Future directions

include implementing this idea for di�erent gauge groups, and embedding an e�ective theory

with this mechanism into a more complete model.
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APPENDIX

�(96) is the discrete subgroup of SU(3) with elements [35]

Xmn � AmnX00 (63)

where

Amn �

0
BBBBBB@
im 0 0

0 in 0

0 0 i�m�n

1
CCCCCCA

(64)

and

X00 2

8>>>>>><
>>>>>>:

0
BBBBBB@
1 0 0

0 1 0

0 0 1

1
CCCCCCA
;

0
BBBBBB@
0 1 0

0 0 1

1 0 0

1
CCCCCCA
;

0
BBBBBB@
0 0 1

1 0 0

0 1 0

1
CCCCCCA
;

0
BBBBBB@

0 1 0

�1 0 0

0 0 1

1
CCCCCCA
;

0
BBBBBB@
1 0 0

0 0 1

0 �1 0

1
CCCCCCA
;

0
BBBBBB@
0 0 �1

0 1 0

1 0 0

1
CCCCCCA

9>>>>>>=
>>>>>>;

(65)

It can be generated by

8>>>>>><
>>>>>>:

0
BBBBBB@
0 1 0

0 0 1

1 0 0

1
CCCCCCA
;

0
BBBBBB@
0 i 0

i 0 0

0 0 1

1
CCCCCCA

9>>>>>>=
>>>>>>;

(66)

Let �a, 	a, �a, �a, 
a, and �a transform as fundamental representations of �(96),

where a = 1; 2; 3 labels the components of the representation.

The holomorphic invariants of �(96) are

� ^	 ^ � �
X
a;b;c

�abc�a	b�c (67)

X
a

�a	a�a�a (68)
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X
a6=b6=c6=a

�a	a�b�b
c�c (69)

plus dimension 7 and higher invariants.

Non-holomorphic invariants are

�y	 �
X
a

��

a
	a (70)

X
a

��

a
	�

a
�a�a (71)

X
a6=b

��

a
	�

b
�a�b (72)

plus dimension 5 and higher invariants.

Note that the lowest dimension holomorphic and non-holomorphic invariants, Eqs. (67)

and (70), are symmetric under the full continuous SU(3) group.
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